

Security ...

What are we talking about?

Carl Weber

GreenHouse Software & Consulting

Brief Intro

- 1978 start as an analyst with Tandem Germany
- I979 first cryptographic program on \DUES
- 1985 specialization in SAFEGUARD & Security
- 1989 1993 successful evaluations (C2, <u>F2/F7, Q3</u>)
- I994 start of GreenHouse Software & Consulting
- 31+ years on the best platform available

Agenda

- What are we talking about?
- Security policy
- Use of mechanisms
- Audit
- Security Review
- Summary

Motto...:

Security people have a good heart, but a sick mind ...

Good judgment comes from experience. Experience comes from bad judgment.

What are we talking about? The five A's

- 1. Authentication
- 2. Authorization
- 3. Auditing
- 4. Administration
- 5. Availability

What are we talking about? View I

- Confidentiality
- Integrity
- Availability

What are we talking about? View II

- People
- Environment
- System

What are we talking about? Reality

	Confidentiality	Integrity	Availability
Human	Clearance	Trust Social engineering	Illness Vacation Motivation
Environment	Access control	Bullet proof Bunker	Power Data comm lines
System	ACL/CL systems Encryption	Hard- and software ECC TMF Encryption	Error recovery DoS RDF

What are we talking about? What we normally focus on

	Confidentiality	Integrity	Availability
Human	Clearance	Trust Social engineering	Illness Vacation Motivation
Environment	Access control	Bullet proof Bunker	Power Data comm lines
System	ACL/CL systems Encryption	Hard- and software ECC TMF Encryption	Error recovery DoS RDF

Security I

- Confidentiality
 - Identification
 - Authentication
 - Authorization
 - Auditing
 - Administration
 - Object re-use

Security I

- Integrity
 - Hardware
 - Software
 - Employees

Security I

- Availability
 - Error Recovery
 - Guarantee of functionality
 - Denial of Service

Security II

- People
 - Clearance
 - Engagement
 - Trust
 - Company Policy
 - Social Enginering

Security II

- Environment
 - Air conditioning
 - Computer room
 - Access control
 - Modem/Switch room
 - Silo

Security II-a

- System
 - ON system security (e.g. ACLs)
 - OFF system security (e.g. cryptography)
 - Electro magnetic radiation (temptest)
 - Availability (online maintenance)
 - Data integrity (ECC, Parity)
 - DoS
 - Covert channel

Security II-b

- System
 - Robust applications (error handling)
 - Functionality (software design)

- Education of ALL employees including management
 why security!
 - description of goal
- Hiring the RIGHT people
- Proper people management

- Clearance
- Trust
- Motivation
- Environment for
 normal daily work
 - disaster case

- Leakage of insider information
 - possible?
 - what if?
- Accessing sensitive information
 - paper/CD/DVD shredder
 - secure paper container
 - locked offices and desks
 - is your PC a Personal or Public C?

- Roles within the company
 - Management
 - Auditing
 - Operations
 - Backups
- Possible personal restrictions
 - shift
 - standby

- Possible restrictions by lawliability
- Escalation procedures
- Shared Secrets
- Social Engineering

Environment

- Building requirements
 - bunker?
 - in basement, or highest floor?
 - room without windows?
- Access control (man traps?) for IN and OUT
- Separation of persons
- Air conditioning
 e.g. inlet not at ground level

Environment

- Entrance not below high water level
- No water pipes in compute room
- Fire alarm and extinguish systems
- Closed shop operation
- Separation of system and peripherals
 - printer and paper
 - tape silo
 - disk farms (mirrored disks)

Environment

- Power
 - two separate inlets and UPS
 - emergency generator
- Communication
 - modem/switch room
 - two separate providers/inlets
 - installation of satellite dish
 - micro wave/laser

- TCP (trusted computing base)
 - what's that?
 - connections to
- Reference Monitor Concept
- National secuity criteria
 - TCSEC (Orange Book, Rainbow series)
 - ITSEC (harmonized criteria)

- Authentication
 - by knowledge, e.g. PIN, static password
 - by possession, e.g. chip card, token
 - by biometrics, e.g. finger print, retina, typing characteristic, voice, hand writing etc.
 - mixed systems with two of the above

- Authorization
 - ACL systems, e.g. SAFEGUARD
 - CL systems, e.g. command level control
 - access methods for read, write, re-write, write to EOF only, execute, purge, own, create etc.

Auditing

- conservation of evidence
- security breach
- hardware as well as software events
- Labeling/Classification (B level security)

- Object re-use
 - magnetic storage, such as tape and disk
 - optical storage such as CD and DVD
 - data on externa media, such as USB stick
 - main memory

- Command level security
- Configuration control
- Software/Application release and control
 - Source and object control
 - Quality assurance
 - Separation of production from test and development

- What is needed to run the system?
- What is NOT needed to run the system?
- Do I have everything in place?
- Trusted Facility Manual (TFM) and The Secure Site Manual (TSSM)
- How to make use of security within applications?

- Worms
- Viruses
- Trojan Horses (*)
- Time Bombs (*)

(*) can be found on Tandem systems

- TCP/IP with
 - TELNET
 - FTP
 - Finger, Ping, Echo
- Dial-in
 - authentication

- MAC Message Authentication Code
 digital signature, e.g. used in EFT/POS
- SWID
 - digital signature for software distribution
- PIN Personal Identification Number
- TAN Transaction Number

- Cryptography
 - symmetric algorithms (DES, IDEA)
 - asymmetric algorithm (public key, e.g. RSA)
 - shared secrets (n of m)
 - e.g. PGP, TrueCrype, PasswordSafe, etc.
- Key distribution
- Standards from ANSII, ECMA, ISO etc.

- How to store, and how to destroy tapes?
- Printouts
 - who distributes them
 - elimination when no longer needed
- E-Mail
 - PGP
- WLAN
 - SSID suppression and link encryption

Electro magnetic radiation

- Tempest system (computer in a fridge)
 prevents compromising emission
- Anti EMP (secure against neutrons)
 no damaging irradiation
- Special cables
 - fiber in a tube

Electro magnetic radiation

- Radiation free displays
- Secure placement of displays
 - screens not visible by others

Information radiation

- Covert channelsResource usage
- Communication without a direct path
 - changing the priority
 - watching the EOF

Availability & Integrity

- Online maintenance
- Redundancy of critical hardware
 - Securing the data high ways in the hardware by parity, CRC, ECC, CPU (voting logic), even connectors
- Redundancy of critical processes
 Tolerating 'Heisenbugs'

Availability & Integrity (physical)

- Disaster Recovery
- Risk analysis
- Application analysis and –evaluation
- Alternate power and communication lines
- Procedures and cook books with regular test runs
- Executive buy in (to justify the costs)
- System wide backups and storage
- Availability and security of personnel

Availability & Integrity (logical)

- Audits
- Before and After images
- Process Pairs (I love Tandem ...)
- Checksums (e.g. the good old type U files)
- Hash (e.g. MD5)
- Message Authentication Code (MAC)

Error Handling

- Error detection
- Error recovery
- Robust applications
- Calling DEBUG, STOP and ABEND
- Error messages and description
 (do NOT use 'well known' error numbers)

Denial of Service

- Controlling system resources
 - disk space
 - CPU usage (% load, which CPU)
 - Communication lines
- Controlling applications
 - Blocking by intentional wrong input
 - parallel usage/users
 - Deadlock

Software Design

- Functionality
- Robust code
- Optimal usage of system specialties
- Following (company) standards
- Easy to maintain and change
- Documented
- Security attributes

Possible attacks (internal)

- By Error
- Defective programs (inadequate QA)
- Defective handling (inadequate user prompting)

Possible attacks (internal)

- By Intention
- Defective programs (virus, time bomb)
- Wanton wrong handling
- Spying
- Sabotage and demolition
- Social engineering

Possible attacks (external)

- Force Majeure
 - Fire
 - Water
 - Earth quakes
- By hackers
 - Bit napping
 - Manipulation
 - Reiteration
 - Repudiation

Possible attacks (external)

- By slobs
 - Demolition
 - Fire
- Social Engineering

Security Policy

No policy – No security!

Weak policy: Please don't damage the system

Strong policy: Need to know

Security Policy

A good Security Policy is a one pager

which is the base for

- Platform specific guidelines
- Has to be backed by the board

Introducing Security

- Appoint a security administrator
- Appoint accountability for in stalling new software
- Define QA
- Install Object and Source version control

Introducing Security

 Make use of available tools (GUARDIAN and SAFEGUARD) and functions (PATHWAY)
 BEFORE new products are introduced

Security Audit

- Auditors have to be independent from system staff, and report directly to the board of directors
- Audits are created by applications as well
- Check audits on a regular basis
- Have escalation procedures in place

Security Review

- Check employees (only in military?)
- Check environment
- Check implementation and usage of security tools and procedures
- Do it on a regular basis!

- Security is top priority and the job of the CEO
- No security policy no security
- No education no acceptance
- No individualization no security
- First use available tools and functions
- The presence of security tools does NOT make the system more secure

- Separate operating, and security administration
- Auditing has to be IT independent
- Accreditation of application by owner
- Checking of used mechanisms by evaluation of ALL audits
- Close (new) security holes immediately

- Be aware of the 'p.ss.d o.f' in-house expert
- Understand security as method to
 - enforce and keep a clean system
 - mechanism to reduce and prevent errors and not as
 - barrier
 - controlling instance

- Run an audit on a regular basis, e.g. every 2 years
- Make use of auditors, who KNOW the hardware and software they have to audit
- No GePEx (general purpose expert) please!
- Feel insecure!

Recapitulation (Tandem GUARDIAN)

- Use all GUARDIAN features
- One user one ID one password
- Prevent the use of SUPER.SUPER
- Don't make use of group managers
- Set the default security as strict as possible
- Restrict the use of remote passwords
- Secure \$SYSTEM.SYS*.* as tight as possible
- Clear CIIN

Recapitulation (Tandem SAFEGUARD)

- Use all GUARDIAN features
- Introduce ALL administrative items in SAFEGUARD
 e.g. OBJECTTYPE
- Before introducing/changing attributes, know what the change will do
- Make use of SAFGUARD when GUAARDIAN is insufficient
- Check ALL audit files

Recapitulation (Tandem subsystems)

- Keep an eye on
 - SCF
 - TACL
 - SQLCI
 - SAFECOM they all support a RUN command
- Secure all CSTM files to "OOOO"
- Set the PATHWAY security attributes
- Use SUPER.SUPER in controlled and homeopathic dosage

Hope we now know what we are talking about ...

Questions?

